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ABSTRACT

Spatial methods for the analysis of agricultural field

experiments are represented here as smoothing methods applied

simultaneously with the estimation of treatment effects. Selection of

both the form of the smoother and the degree of smoothing required may

be based on cross-validation. Particular emphasis is placed in this

paper on generalized least-squares estimation in linear models, but

the principle applies quite generally.

AMS (MOS) Subject Classifications: 62G05, 62J07, 62P10

Key Words: agricultural field experiments, generalized least-
squares, incomplete block designs, neighbour methods,
Papadakis method, recovery of inter-block information,
smoothing, spatial models.
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SIGNIFICANCE AND EXPLANATION

One of the oldest problems in the application of statistics to

experimental data is the disentangling of the effects of environ-

mental variation from those of the treatments, whose comparison is the - -

purpose of the experiment. In the context of agricultural field

experiments the environmental variation is due to local fluctuations

in soil type, nutrient concentrations and micro-climate, summarised by

an unknown level of fertility that varies from experimental plot to

plot.

Traditionally the statistical analysis of yield data from such

experiments has employed block-based methods, which are ideal only

under the unrealistic assumption that the fertility level is constant4 "

between abrupt breaks at prescribed block boundaries.

Recently there has been much interest in adjusting for fertility

in a more continuous manner, recognising that the true fertility pro-

file can probably be more realistically represented as a smooth

surface. But the various methods proposed are based on differing

statistical principles, so that comparison between methods has been

difficult.

The present paper facilitates such comparison by demonstrating

that all the techniques suggested, in particular those based on least-

squares analysis of a linear model, may be viewed as smoothing methods

applied simultaneously with the estimation of additive treatment ..-

effects. Comparison of methods reduces to a study of the behaviour

and performance of the corresponding smoothers.

It is suggested that cross-validation be used both to choose the

r degree of smoothing required, and to select the appropriate smoother.

Algebraic results are presented that ease the numerical computations

involved in this method for a number of important special cases.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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LINEAR MODELS FOR FIELD TRIALS, SMOOTHING,

AND CROSS-VALIDATION

Peter J. Green

1. Introduction

The aim of many agricultural field experiments is to estimate

treatment contrasts efficiently whilst avoiding bias due to trends in

fertility and other environmental factors. Blocking methods are

customarily used, even when blocks have no physical meaning in thei%
experiment, but there has recently been increasing interest in

adjusting for trends in a more continuous way leading to so-called

'spatial' or 'neighbour' methods that deliberately exploit the spatial

context.

An early example is the method of adjustment using residuals from

neighbouring plots due to Papadakis (1937); see also Bartlett (1978).

Succeeding developments have been fostered by increased general

interest in spatial methods and by enhanced computing power. Various

recent proposals appear in the innovative paper by Wilkinson, Eckert,

Hancock and Mayo (1983) and its accompanying stimulating discussion.

The intention of this paper is to increase understanding of the

proposed methods, and to aid their comparison, by representing them

all as smoothing methods, whether they were originally conceived as

such (e.g. Green, Jennison and Seheult, 1983, 1985), or derived from

explicit spatial stochastic models (e.g. Besag, 1977), assumed co-
9

variance structure (e.g. Williams, 1985b) or other principles (e.g.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Papadakis; Wilkinson, et al.)

We first demonstrate that the generalized least squares analysis

of any linear model is a smoothing method. While this embraces only

some of the spatial methods mentioned, it provides an important link

with classical block-based analysis. Indeed, for incomplete block

designs, Yates's analysis with recovery of inter-block information

(1939, 1940) may be regarded as a prototype example for this dis-

cussion. The smoothing interpretation extends to analyses not based

on least-squares. Later we discuss the choice or estimation of the

tuning constant or variance ratio controlling each method, advocating

the criterion of cross-validation for this choice; this criterion also g

provides a means of selecting and assessing the method itself.

Design will not be considered here; no attempt is made at justi- ..-

fication or robustification via randomization theory, so design plays 1

no explicit role in analysis. It will of course affect efficiency:

for discussion, see Martin (1982) and Williams (1985a).

2. Generalized least squares

Consider the linear model

2
E(y) = DT + Rp; var(y) = a2V(O) (2.1)

for the vector of yields y from an experiment on n plots to com-

pare a single set of t treatments. Here D is the design matrix

for treatment effects T and R that for any other fixed effects p

to be fitted; we assume that the complete design matrix X = [D :R-

has full rank. The spatial context is represented by appropriate

2
choice of the variance matrix 0 V(O) which is non-singular and

2
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2
assumed known apart from the multiplier 0 and the parameter *,

usually scalar.

The presence of * complicates an otherwise trivial estimation

problem. If * and hence V are known, generalized least squares

leads to the estimating equations 0

xTv- ' Ly - x1j]I =0

P

from which p may be eliminated to yield the reduced equations for 0

T alone:

D T(I - S)(y - DT) = 0 (2.2)

where (de Hoog, Speed and Williams, 1985) 60

-1 V-IR( RT- -1R)-RTV-1

+ (2.3)

= I - HI - P R)V(I - P R (23

Here I is the n x n identity matrix, and for any matrix A, A-

denotes any generalized inverse, A+ the Moore-Penrose inverse, and

PA the projector A(ATA)-AT, which is invariant to the choice of .0

generalized inverse. The second form for S emphasizes that not all

of V need be specified, only the result after sweeping out the fixed

effects in R (see example 2 below). S

Since V depends on *, so do S and the generalized least-

squares estimate T; these will be denoted S(f), T() for emphasis

where necessary. If the model is correct and * known this is an

efficient analysis, and 02 may be estimated to quantify the pre-

cision of T: however, the least-squares principle does not of itself

lead to an estimate of 0.

3
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Example 1. Incomplete block designs.

In the analysis of incomplete block designs, with recovery of

inter-block information (see Cochran and Cox, 1957, chapters 9 - 11),

the assumed variance matrix is o2 V(W) 02(I + 0Pz ); here Z is the

design matrix for blocks, so for constant block size k, PZ =

k-IZZT. This gives an error structure with two uncorrelated

2
components: plot error with variance 0, and random block effects

with variance a 2 k - . If the design is resolvable, R is taken to S

be the design matrix for fixed replicate effects; otherwise, R is a

single column of 1's to fit an overall mean only. Note that some

authors (for example, Nelder (1968)) assume instead that replicate .0

effects are random.

Example 2. Least-squares smoothing.

Green, et al (1983, 1985) describe a method of analysis for field ..

experiments derived from smoothing based on a quadratic penalty

function. The version providing one-dimensional adjustment is equiva- '-

lent to a generalized least squares regression of Ay on AD with S

2 0-i + AAT) as assumed variance matrix for Ay, where A is a - ...

rectangular matrix taking second differences along lines of adjacent

plots, and X is a tuning constant. The analysis is invariant to 0

linear trends within lines of adjacent plots, thus we take R to be a

design matrix for separate linear regressions in each such line, D

fits all treatment contrasts, and V is any matrix such that AVAT

-1 TA- I + AAT. The tuning constant X, or A-, plays the role of *.

This model was also proposed, independently, by Nelder in discussion

of Wilkinson, et al (1983).

4
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Other forms of least-squares smoothing are discussed by Green

et al. One is equivalent to the linear variance analysis of Patterson --

(in discussion of Wilkinson, et al (1983)) and Williams (1985b), which

uses V as above, but where A takes first differences between

adjacent plots in the same replicate. "

3. The connection with smoothing.

Green, et al (1983) start from an explicit smoothing formulation,

and later show its equivalence with generalized least-squares. The

connection holds quite generally, and is worth exploiting. It helps

to stress that model (2.1) is only assumed in order to generate an

analysis, it provides a different interpretation and possible improved 6

algorithms, and it enables us to tie in other methods not equivalent

to least-squares for some linear model.

Since V( ) is positive definite, we may assume, after possibly

2
re-scaling 0 and V, that V - I is non-negative definite. Re-

write model (2.1) as
S

y = DT + + n (3.1)

where cov(&,n) = 0; E(E) RP; var( ) a (V - I)

E(n) 0; var(n) =

Now consider the equations:

& S(y - DT) (3.2)

T (D D) D (y - ) . (3.3)

Their simultaneous solution gives the generalized least-squares

estimate T (see (2.2)). But if we alternate between (3.2) and

(3.3), from any initial estimates, we converge to a minimum of (T) =

5
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T(y - DT) (I - S)(y - DT) and hence to T. For if (3.2) followed by

(3.3) updates T to T , then Q(T ) = Q(T) -zT(I + S)z where z =

PD(I - S)(Hy - DT); convergence is obtained if (I - S) is non-

negative definite and (I + S) is positive definite, and these are

true for S of (2.3). (Further, replacing S by aS + (1 - a)I

does not affect the solution to (2.2), so that adjusting a may

increase the speed of convergence: it is fastest when a - 2.)

Generalized least-squares estimates may thus be obtained by

alternately performing an ordinary least-squares regression (3.3) on

(y - ) and smoothing the residuals from fitted treatment effects

(3.2). We term S a 'smoother' because its eigenvalues lie in

[0,1], with not all of them equal to 0 or 1.

For the example of incomplete block designs, V = I + *Pz' V_-

I - (I + 0 -1 I PZR = R, so (1 + - + ). Thus the

relevant 'smoother' involves a weighted average of the block means and

the overall mean (or replicate means in the resolvable case). In

neighbour methods, S corresponds more closely to the intuitive

notion of smoothing.

We should clarify the status of E. In the model (3.1) this

represents a 'trend' term incorporating both fixed and random

effects. Under the additional assumption of joint Normality for

and n, the conditional expectation of F given y is

(I - V 1)(y - DT) + V- RP, whose generalized least-squares estimate

S(y - D;) is produced by the alternating iteration described above.

This generalizes ridge regression (Hoerl and Kennard, 1970): if

2 -1 T
T and p are absent, and has prior variance 02X-WW

T
, then

6
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E W8 where 6 is estimated by (WTW + XI)-wTy.

When the variance matrix is 02V = 2(I + W T where { i}
111

and {W.} are known (one or more variance components besides white

noise), an alternative representation as a smoothing problem is

possible. Taking {W.} to be of full rank, we have implicitly: 0

y = DT + Rp + EWi8i + n (3.4)

where T and p are fixed effects, and {8i } and n are un-

correlated zero-expectation random effects with var(8.) = 02 I and1 1

2
var(n) = a I. (The identity matrices may be of different orders.)

Minimization of the penalty function

c = ZV1 T. + n n (3.5)

subject to the additive model (3.4) leads again to the estimate T.

Yet another equivalent formulation is to minimize the ordinary error

sum-of-squares nTn subject to (3.4) and upper bounds on {T •

A very similar approach to smoothing is often followed in non-

parametric regression problems (Wahba and Wold, 1975; Wahba, 1977).

Here the model would be yi = (t ) + ni and one possible penalty

function is f(&"(t)) 2dt + E2
1

Natural points of departure for generalizing the least-squares

smoother are the simultaneous equations (3.2, 3.3) or the penalty S

function (3.5). There is no need for S to be symmetric for (3.2)

and (3.3) to solve (2.2), so that asymmetric linear estimating equa-

tions such as thooe of Wilkinson et al (1983) may be included.

Papadakis's method, whether iterated or not, also fits this formu-

lation naturally. As suggested by Green, et al (1985), alternative

robust/resistant analyses may be obtained by use of a non-linear

7
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smoother or treatment estimator in (3.2, 3.3), or by amending the

quadratic loss function (3.5).

4. Choosing

Since cannot be estimated by least-squares principles, a wide

variety of methods for choosing its value have been proposed. Yates's

original proposal for incomplete block designs (1939, 1940) entailed

equating two suitably chosen sums of squares to expectation, an
I

approach also adopted by Williams (1985b). Alternative estimators for

block designs, based on Normal-theory likelihood methods were given by

Nelder (1968) and Patterson and Thompson (1971). We return to these

criteria in Section 5. For Bayesian viewpoints, see Lindley and Smith

(1972) and Box and Tiao (1973, chapter 7).

An attractive, less model-dependent, alternative is to use the

criterion of cross-validation, as described by Stone (1974). The idea

is to treat each observation in turn as 'missing' and to 'predict' it

from the model as fitted to the remaining observations for each given

value of 0. The parameter 0 is then chosen to minimize the mean

squared error of prediction. Considerable use has been made of cross-

validation and related techniques in recent work on smoothing (e.g.

Wahba and Wold (1975), Craven and Wahba (1979) and Silverman (1985)).

In Stone's terminology, the term 'model' is abandoned as conveying a

richer meaning than intended, and replaced by that of a 'prescription'

or class of predictors.

Our prescription involves minimizing the weighted sum-of-squares

T -1
(y - DT - RP) V()- (y - DT - RP)

8 4
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or, equivalently,

(y - DT)T (I - S( ))(y - DT)

over choice of T, p (thereby estimating these) and choice of the

'missing' component(s) of y. This is equivalent to fitting a dummy

covariate for each missing observation, gives generalized least- 0

squares estimates based on the available data, and provides the con-

ventional 'missing value formula' in the case of uncorrelated data.

Introducing the dummy design matrix E for missing observations

gives the augmented model

E(y) = DT + Rp + EY, var(y) = 2V(O)

The reduced estimating equations for the cross-validation errors y

are

ETM(y - EY) = 0

where

M = M(O)= V - - V-lX(XTV-X)- X TV 
"

= (I - S) - (I - S)D(D T(I - S)D)-D T(I - S) (4.1)

[(I -P D,R)V(I - PD,R
)  .

Here, PD,R is the projector for the partitioned matrix [D R]. In 0

particular, if a single observation, yi say, is deemed to be

missing, E consists of a qingle column of 0's with 1 in row i,

and the prediction error Y (i) say, is

n

(Yi (ETME)-lETMY I M i jY J/ii"

The cross-validation mean squared error is therefore

9
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7able 3

imulation f or least squares smoothing:

10th and 50th percentiles of percentage efficiency f or
5 criteria f or choice of *

Percentile -10th 50th

Criterion CV GCV Tukey RE!.U Lik CV GCV Tukey 1REML Lik

rariance Roughness Design

;tructure t
true

.02 4 45 47 45 45 45 93 94 94 96 96

16 79 77 78 80 78 97 97 96 97 97

.2 4 38 37 36 35 36 88 84 87 89 89

16 73 73 76 78 76 95 94 93 93 93

.02 4 40 39 36 37 39 87 85 84 88 86

16 71 65 75 78 74 95 95 95 96 96

.2 4 18 17 19 17 19 79 81 79 78 77

16 70 71 74 71 67 92 92 94 93 93

.02 4 42 42 42 42 42 94 93 96 96 96

16 77 80 82 85 82 97 97 98 98 97

.2 4 25 27 28 26 26 83 84 89 84 87

16 71 71 71 75 70 88 90 90 93 90

*esigns (each 48 plots in one line)

t=4) *
(t- 16)

14 16 12 7 11 3 15 1 13 5 9 6 2 10 14 5 12 15 2 3 14 8 9 11 16 6 1 7 10 4

3 11 2 13 8 6 4 15 9 16 5 3 10 7 12 14 1

-20-



examine the criteria marginally: an appropriate measure of the

efficiency of a particular choice * is

t 2,

min (T (W)T)2
"""

0jt 2
c) (0 )-T

where {T} are the true values, here zero. Note that 100%

efficiency cannot be attained. For each criterion, the empirical

distribution of efficiency, from the 100 replicates, was con-

structed. Some of the results are presented in Table 3. They .0

demonstrate rather close agreement between the criteria, and suggest

no clear preferences. The superiority of generalized cross-validation

over the ordinary version found by Craven an-i Wahba (1979) is not

apparent here, presumably because of the well-conditioned nature of

these designed experiments.

Since the other criteria are less readily adapted to a variety of

smoothing methods, especially those not derived from least-squares,

these results support the use of cross-validation for choice of *.
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algebraic results in Sections 4, 5 and 6. The form of V( ) assumed

was that corresponding to ordinary least-squares smoothing (example 2

in Section 2). Three factors were varied in the experiment.

(I) The true variance structure for y: three alternatives,

in each case white noise n plus correlated F, all

jointly Normally distributed with (a) first differences or

(b) second differences of & independent and identically

distributed, or (c) F as a 7-point equally weighted

moving average.

(II) The true roughness, measured by 'true

(n& TATA;)/ {(n-2 ) l: two alternatives, .02 and .2.

(III) The design (and number of treatments): two alternatives,

both with n = 48 plots: one adapted from a serially

balanced design on 4 treatments, the other a triple

lattice with 3 replicates of 16 treatments, block size

4.

For each of the resulting 12 3 x 2 x 2 cases, 100 replicates

were performed: F and n were drawn independently from (I) and

scaled according to (II), then the sum y = F + n analysed by least-

squares smoothing assuming design (III). Thus true treatment effects

were set to zero.

Five criteria were compared: ordinary and generalized cross-

validation, and three methods suggested in Green, Jennison and Seheult

(1985): 'Tukey's rule', in which yTMy/(tr(M))2  is minimized, and

full and restricted maximum likelihood. The resulting choices of .

were extremely highly correlated. It was therefore sufficient to

-18- .
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Table 2

Choice of *in second-difference least-squares smoothing: data-sets as

described and analysed in Green, et al (1985).

Data Set

Mildew SB 77ES 5 SB77ES 6

n,t 38,4 51,17 48,16

Estimate .

Yates 0.11 0.0162 0.0603

Tukey 1.86 0 0.0613

Restricted maximum likelihood 2.79 0.0041 0.0591

Generalized cross-validation 3.06 0.0051 0.0809

Cross-validation 3.40 0.0022 0.1113

Maximum likelihood 5.27 0.0238 0.1915

-17-



6. Application to least-squares smoothing

The spectral decomposition of M given in (5.1) reduces the

computation in least-squares smoothing methods, whether in the form

based on second differences as discussed in detail by Green, et al

(1985) or in the generalizations described here. 0

All of the methods for choosing the tuning constant

proposed by Green, et al involve computing the decomposition

* * *-1

y = DT + Z + n for several values of *-. The spectral
decomposition (5.1), while incurring a set-up cost, permits the

decomposition and various derived statistics to be computed very

-1 -
cheaply for subsequent values of *-.

When V(W) = I + *WwT, note that V = I-W( - I+wTw)-wT +

I-Pw  as + 0 0. The fixed effects T, P in model (2.1) are

estimated by Ty where T = T() = (xTv-lx)-xTv-1. Note that M =

V-1 (I-XT). Now

T(-) (I-M(f)) = (xT(I-Pw W XT(I-PW)(I - V(,) -(I-XT( ))) = T(*)

since (I-Pw)(I-V- ) = 0. Thus if we write TI n( ) = M(O)y, the

decomposition of y-fl(f) as DT(l) + (*) is obtained by linear

transformations not depending on *: only M(O) need be re-computed

for each *, and that from the spectral decomposition (5.1).

Numerical examples of choices of * are given in Table 2: the

data-sets are those used by Green, et al (1985).

7. A simulation study

To compare the use of cross-validation in choosing * with other

criteria, we performed a simulation experiment, making use of the

-16-
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To derive an analogue of Yates' estimate for * valid for

T
general known W in V = I + *WW , note that in consequence of

(5.1) Sx  and SX,w  are the limits, as + 0 and m respectively,

of the weighted error sum-of-squares r(o) = y M=

min {(y-DT-Rp) T V -(y-DT-RP)) that would be the focus of attention

if * were known. Equating r(0) and lim,r(o) to expectation

under model (2.1) therefore seems the natural analogue, although this

procedure is not as cheap and convenient as in the incomplete blocks

case, because the expectations in general involve non-trivial trace

terms. Further, if D, R and W together span Rn, e.g. least-

squares smoothing with first or second differences, r(o) + 0 as

+ -. In this situation, Williams (1985b) tacitly uses

lim+.. *r(,) as the second sum of squares: from (5.1) we see that

this equals yTNy, where N = [(I - Px)WWT(I - PX)]+o Provided

that (I - PV)(I - PR) = 0, the result of de Hoog, et al (1985)

stated in (2.4) remains true when V is singular, if V- 1 is

replaced by V . Thus, replacing V by WWT and R by X, we see

that if (I - Pw)(I - P = 0 we have

N = ATA - TAx(XT AT AX)-xTATA

= AT(I P )A
AX

if A is chosen so that (WWT)+ - ATA; for example A = (WTW)-IWT

if W has full rank. Thus yTNy is the residual sum-of-squares from p

ordinary regression of Ay on AX.

-15-
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Table 1 I

Balanced incomplete block designs:

estimate of * for four data sets, accordingto five different criteria.

Data set I

Davies Davies Quenouille John Ditto,
(1954, (1954, (1953, (1971, fitting
p207) p2 16) p177) p226) replicates .

n,t,k 12,4,3 20,5,4 30,6,3 36,9,3 36,9,3

Estimate

Jensen and Stone (1976) 13.08 -0.6357 2.938 -0.4444 -

Yates (1940) 21.40 -0.5033 3.320 0.1348 -0.1685

Cross-validation as 21.40 -0.5033 3.446 0.1975 -0.1685
described here

Nelder (1968) 21.40 -0.5033 3.355 0.2102 -0.1685

Stein (1966)* 68.32 0.2640 9.123 0.4303 _

p

Notes: Where * is estimated as negative, it would be customary to use
= 0, i.e. to use no block adjustment. The rows marked * were

given for these data sets by Jensen and Stone. Nelder's estimates are
identical with those of Patterson and Thompson (1971) since the blocks
are of equal size. p

-14-
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.O

squares, yT(I - )y = X,W , and the blocks sum-of-squares, within

replicates if relevant, adjusted for treatments, yT(Pxw -Pxy

Sx S
SX Sx,W "  . j-

The requirement of equality of the non-zero eigenvalues (X.1 is

strong. It demands considerable implicit symmetry in the designi for

example, it does not apply to all balanced incomplete blocks designs.

If WWT is proportional to a projector for some factor, the

requirement is of first-order-balance for this factor with respect

to X, in the sense of James and Wilkinson (1971).

Some numerical examples are given in Table 1 for the same

collection of BIBD's considered by Jensen and Stone (1976) in their

application of cross-validation to these designs. Note the exact or

close agreement between cross-validation and the criteria of Yates

(1940), Nelder (1968) and Patterson and Thompson (1971). When the

eigenvalues {A} differ, the exact connection is broken; however if

they do not differ too markedly, the argument above suggests approxi-

mate equivalence of the two criteria.

It will be noted from Table I that Jensen and Stone (1976)

obtained different weights from a cross-validation argument based on a

different prescription. They obtain separate predictors for the

intra- and inter-block extremes of 0(- and -1) regarding an entire

block as missing in deriving the inter-block predictor. The Stein

estimates differ considerably from the rest, apparently because they

utilize inter-block information only through the treatment com-

ponent: Stein's estimator (1966) uses only T(-I), T(-) and SX, w .

13
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Since the two terms are symmetric and commute, they may be simul-

taneously diagonalized (Wilkinson, 1965, p. 52) and then using the

idempotence of I - PX it is straightforward to prove the existence

of an orthogonal matrix U partitioned as [Ui U2 U3], where Ui  '''-

has ri  columns, and a diagonal matrix A of positive eigenvalues

{X } such that PX = U1 U1 , (I - Px)WWT(I - PX )
=

U 2 A u and I - PX,W T U3U " Then

M()= U2 (i + $A)-i u2 + U3 U 3  (5.1)"

so that M has eigenvalues 0 and 1 with multiplicities r, and

-1r3, and also {(1 + j)-1, j = 1,2,...,r2). Note that this

explicitly demonstrates how M varies from (I - PX )  to

(I - Px,w) as 0 increases from 0 to -; for example, in the

incomplete blocks model these limits corresponding to ignoring block

effects, and to fitting them as fixed, respectively. The decompo- .

sition used here is essentially that used by Patterson and Thompson

(1971) for block models.

It follows from (5.1) that (d/d)M 1 (M - M), so that by .

the remarks at the end of the previous section, generalized cross-

validation is equivalent to equating to expectation yTMry for r =

2 and 3, and restricted maximum likelihood similarly for r = 1 0

and 2.

When the {X.I are equal, all positive powers of M are convex

combinations of I - PX and I - PX,W so that both criteria are - S

algebraically equivalent to Yates's estimate of 0 for incomplete

block designs (1939, 1940); in our notation, with W = PZ, this

entails equating to expectation the intra-block residual sum-of- -

12
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structure V(O), presumably in practice from a small number of

alternatives. Coupled with cross-validatory assessment of that choice

(Stone, 1974), this may be the only reasonable way to choose between

methods on the basis of an individual Aata set, rather than, for

example, from uniformity data believed to have similar covariance

structure.

Mr. Robin Thompson has pointed out to me an interesting parallel

between the present approach and that of restricted maximum likeli-

hood, which may be stated in some generality as follows. Differenti-

ating (4.3) with respect to and noting that MX = 0 and MVM =

M reveals that generalized cross-validation is equivalent to equating

to their expectation under (2.1) certain sums-of-squares, namely

YTM2 y and its derivative, or for vector * all partial deriva-

tives. The restricted maximum likelihood approach of Patterson and

Thompson (1971), generalized to arbitrary V, does the same but

with M2  replaced by M. Some numerical comparisons will be made in

Section 5 and 6.

5. A spectral decomposition

We now restrict attention to variance structures of the form V =

I + OWWT  for some known matrix W, representing plot error with one

other variance component: is the ratio of variances. This

includes the incomplete blocks model, and least-squares smoothing
I

based on first or second differences.

From (4.1) we have

M+ = (I - Px)V(I - PX) (I -PX ) + (I - pPX )
xP

11 -
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-n 1 n n 2

C(- M y]/M] (4.2)=I) n i=I1 j=1 iy i

Thus, by analogy with Wahba (1977) and Craven and Wahba (1979),

there is an algebraic form for C(O) that can be computed without

performing n separate regression calculations. However, there is

still usually a much greater burden in evaluating M(O) than in

finding T(O). Some short-cuts are possible (see Sections 5 and 6;

also Craven and Wahba (1979)), but to alleviate the problem, and to

acquire a form of rotation-invariance, Wahba (1977) proposed an

alternative criterion of generalized cross-validation, derived by

replacing Mii in (4.2) by its average, n- tr(M), to give

G(O) = n(tr(M))-2 yTM2 . (4.3)

Under certain conditions of balance or symmetry in designed experi-

ments, the Mii are equal. Choice of 0, whether scalar or vector-

valued, can be made in practice by numerical minimization of (4.2) or

(4.3): for scalar , we have found that both golden-section and

quadratic interpolation on log work well.

In the context of non-parametric regression, Silverman (1984)

uses results of Utreras (1980, 1981) to amend the criterion further,

by calculating the trace from eigenvalue approximations.

When using a smoother S not of the form (2.3), these algebraic

simplifications are not available, but the principle of cross-

validation may still be used. The prescription must define how to 4

smooth across the gap caused by a missing observation.

A logical extension to cross-validation for selecting the

parameter 0 is to allow it to choose the form of the variance

10
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